$y = x^3 - 3x^2 + 1$ $(-2 \le x \le 3)$ 最大最小值 #50 例題

$$y=x^3-3x^2+1$$
 を微分すると $y'=3x^2-6x$ となる。 \blacksquare

$y = x^3 - 3x^2 + 1$ $(-2 \le x \le 3)$ 最大最小值 #50 例題

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$			0		0		
$oxed{y}$							

 $oldsymbol{x} < oldsymbol{0}$ のとき $oldsymbol{y}'$ が +,- どちらか調べる。

$$y' = 3x^2 - 6x$$

= $3x(x-2)$

x	-2	•••	0	•••	2	•••	3
y'			0		0		
$\mid y \mid$							

$$egin{aligned} oldsymbol{x} < oldsymbol{0} & ext{のとき } y' & ext{が} +, - \ & ext{ どちらか調べる。} \ & ext{ 例えば } x = -1 & ext{ を} \end{aligned}$$

$$y' = 3x^2 - 6x$$
$$= 3x(x-2)$$

例えば
$$x=-1$$
 を y^\prime に代入すると

x	-2	•••	0	•••	2	•••	3
y'		+	0		0		
y							

$$y' = 3x^2 - 6x$$
$$= 3x (x-2)$$

 $oldsymbol{x} < oldsymbol{0}$ のとき $oldsymbol{y}'$ が +,- どちらか調べる。

例えば x=-1 を y^\prime に代入すると

$$y' = 3 \times -1 (-1-2)$$

= $+ \times - (-1)$
= $+$

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0		0		
$oxed{y}$							

0 < x < 2 のときy'が+,- どちらか調べる。

$$y' = 3x^2 - 6x$$
$$= 3x(x-2)$$

x	-2	•••	0	•••	2	•••	3
y'		+	0		0		
$\mid oldsymbol{y} \mid$							

$$y' = 3x^2 - 6x$$
$$= 3x(x-2)$$

$$egin{aligned} oldsymbol{0} &< x < 2 \ \mathcal{O}$$
 のとき y' が $+,-$ どちらか調べる。

例えば x=1 を y^\prime に代入すると

x	-2	•••	0	•••	2	•••	3
y'		+	0	1	0		
$\mid oldsymbol{y} \mid$							

$$y' = 3x^2 - 6x$$
$$= 3x (x-2)$$

$$egin{aligned} 0 < x < 2 \ {
m O}$$
とき y' が $+,-$ どちらか調べる。

例えば x=1 を y^\prime に代入すると

$$y' = 3 \times 1 (1-2)$$

= $+ \times + (-)$
= $-$

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0	1	0		
y							

 $\left[egin{array}{ll} 2 < x &$ のときy' が+,- どちらか調べる。

$$y' = 3x^2 - 6x$$

= $3x(x-2)$

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0	_	0		
$oxed{y}$							

$$y' = 3x^2 - 6x$$

= $3x(x-2)$

 $ig|_{m{2} < m{x}}$ のとき $ig|_{m{y}'}$ が +,- どちらか調べる。

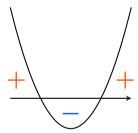
例えば x=3 を y^\prime に代入すると

x	-2	•••	0	•••	2	•••	3
y'		+	0	1	0	+	
$oxed{y}$							

$$y' = 3x^2 - 6x$$
$$= 3x (x-2)$$

2 < x のときy'が+,-どちらか調べる。

例えば x=3 を y^\prime に代入すると


$$y' = 3 \times 3 (3-2)$$

= $+ \times + (+)$
= $+$

2 次関数のグラフが分かっていれば楽です

x	-2	•••	0	•••	2	•••	3
y'		+	0	_	0	+	
y							

$$y'=3x^2-6x$$
 は x^2 の係数 >0 だから

$$y' = 3x^2 - 6x$$

= $3x(x-2)$

が楽です

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0	_	0	+	
$oldsymbol{y}$							

y' が- のときはy のグラフは右下がり \setminus なので

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0	_	0	+	
y		7		7			

y' が- のときはy のグラフは右下がり \setminus なので

x	-2	•••	0	•••	2	•••	3
y'		+	0	_	0	+	
$oxed{y}$		7		7		/	

 $x={\color{red}0}$ のときの y の値を求めると

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0	_	0	+	
y		7	1	\		/	

 $x={\color{red}0}$ のときの y の値を求めると

$$y = \frac{0^3 - 3 \times 0^2 + 1}{1}$$

$$= 1$$

x	-2	•••	0	•••	2	•••	3
y'		+	0	_	0	+	
y		7	1	7		/	

 $x={\color{red}2}$ のときの y の値を求めると

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0		0	+	
y		7	1	7	-3	/	

 $x={ extstyle 2}$ のときの y の値を求めると

$$y = 2^{3} - 3 \times 2^{2} + 1$$

= 8 - 12 +1
= -3

\boldsymbol{x}	-2	•••	0	•••	2	•••	3
y'		+	0		0	+	
\boldsymbol{y}		7	1	7	-3	7	

x=-2 のときの y の値を求めると

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0		0	+	
y	-19	7	1	7	-3	/	

ig| x = -2 のときの y の値を 求めると

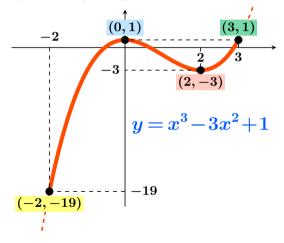
$$y = (-2)^3 - 3 \times (-2)^2 + 1$$

$$= -8 - 12 + 1$$

$$= -19$$

x	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0	1	0	+	
y	-19	^	1	7	-3	7	

 $x={ extbf{3}}$ のときの y の値を求めると


x	-2	•••	0	•••	2	•••	3
y'		+	0	_	0	+	
y	-19	7	1	7	-3	/	1

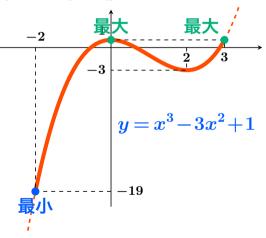
 $x={ extbf{3}}$ のときの y の値を求めると

$$y = \frac{3^{3}}{3} - 3 \times \frac{3^{2}}{3} + 1$$

= 27 - 27 +1
= 1

\boldsymbol{x}	-2	•••	0	•••	2	•••	3
$\mid y' \mid$		+	0		0	+	
$oldsymbol{y}$	-19	7	1	/	-3	/	1

最大・最小値は



x	-2	•••	0	•••	2	•••	3
y'		+	0	_	0	+	
y	-19	7	1	7	-3	7	1

圏 x=0, 3 のとき最大値 1

x=-2 のとき最小値 -19

最大・最小値は

